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1. Introduction

1.1. About this Tutorial

The aim of this tutorial is to help you using the program VMD for visualizing results from (first principles)
molecular dynamics and electronic structure calculations, mainly done with the CPMD program, but also data
from other codes like ESPRESSO/PWScf, GROMACS or Gaussian that can produce similar outputs are
considered. It follows a close hands−on approach, so you will be provided with many examples and solutions to
common problems. Most of the examples were conceived to satisfy specific needs in the Lehrstuhl für
Theoretische Chemie at the Ruhr−Universität Bochum, but we try to not only show the solutions but also to
describe the recipes. So we hope that the techniques described can not only be used to solve a particular problem,
but are of more general use and can be translated to other, similar problems. Many of the examples should be
adaptable with little effort to data created by other electronic structure or simulation programs. To help you
getting started, most of the data and input files are available for download, so you in many cases, you will only
need to adapt and/or combine the existing solution(s). Please note, however, that the following is assuming some
background knowledge about using VMD. If you are new to VMD, you should start instead with the  introductory
tutorial on the VMD homepage.

1.2. About the Programs

CPMD is an ab init io electronic structure and molecular dynamics (MD) program using a plane
wave/pseudopotential implementation of density functional theory. It is mainly targeted at Car−Parrinello MD
simulations, but also supports geometry optimizations, Born−Oppenheimer MD, path integral MD, response
functions, excited states and calculation of some electronic properties. For further information you can take a look
at the CPMD consortium homepage at http://www.cpmd.org/.

ESPRESSO is a collection of electronic structure codes for plane wave pseudopotential calculations. Its main
components are: PWscf (see below), FPMD and CP, as well as a GUI for creating input files and a code to create
pseudopotentials.
PWscf (Plane−Wave Self−Consistent Field) is a set of programs for electronic structure calculations within
Density−Functional Theory and Density−Functional Perturbation Theory, using a Plane−Wave basis set and
pseudopotentials. PWscf is particularly well suited for the calculation of ground state calculations for solids and
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surfaces. It has support ultra−soft pseudopotentials and k−points and can be used to calculation many properties
using Density−Functional Perturbation Theory, BOMD, and for determination of energy barriers and reaction
paths using Nudged Elastic Band (NEB) and Fourier String Method Dynamics (SMD).

Visual Molecular Dynamics (VMD) is a very powerful and flexible toolkit for visualization and analysis of
molecular dynamics simulation data. Although it was initially developed with focus on large biomolecular
systems, newer versions contain many features that make it a very attractive choice for visualizing results from
CPMD and other electronic structure calculations. Further information can be found on the VMD homepage at
http://www.ks.uiuc.edu/Research/vmd/. There also is a VMD Script Library with more examples of VMD
scripting.

1.3. Notes
Most of the examples presented here assume, were tested with and may only run with VMD version 1.8.3 or later
on a UNIX(TM)/Linux machine.

Contact axel.kohlmeyer@theochem.ruhr−uni−bochum.de if there are compatibility problems
with newer versions of VMD or on other platforms. Any other form of feedback, e.g.
corrections, enhancements, further examples, or new visualization problems, is also highly
welcome.

1.4. Recent Changes

2005/01/03
Several new examples, tricks, hacks and utilities added. Some examples now also come with directions or
inputs for ESPRESSO/PWScf. Reviewed some of html generation macros, added support for computed
links between parts.

2004/07/06
Introduced sections for the start page and added this section, so that people know when and where to look
for new stuff. Older changes taken from the CVS changelog.

2004/07/05
PDF file generation now uses HTMLDOC instead of html2ps. The PDF is looking much nicer now and
generation is much faster and needs less memory. Also fixed a bunch of minor markup errors detected by
htmldoc.

2004/05/21
Added example for 'cloning' a representation from one molecule to another (with an optional GUI) and
how to hook up a Tk−GUI into the extension menu.

2004/05/16
Added example for calculating a 2d−Ramachandran distribution and how to draw the result as
color−coded 3d−surface using triangle drawing primitives.
Added example for a hardcopy printing command.

2004/05/14
Added two new examples:
Banging two buckyballs together to illustrate the 'User' colorization method,
and an animated Isosurface (by cycling through the volumetric data sets) of a Hydrogen molecule shot
trough Gold atoms.
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3. Preparation and Installation Issues

Many of the examples presented here utilize the excellent scripting capabilities of VMD and consist in part of
reusable subroutines written in the VMD/Tcl dialect. To adapt the VMD scripting examples presented here, you
should therefore first have a look at the excellent  VMD User's Guide and also get a little bit acquainted with
programming in Tcl/Tk. There is a Python scripting interface in VMD as well, but it is not (yet) covered here.

Via the autoloading feature of the Tcl/Tk script engine embedded in VMD users can have a repository of Tcl
subroutines which will be loaded on demand. This way you don't have to copy the files into every single VMD
script and you can update your scripts by just replacing the files in the repository (of course only as long as the
calling sequence stays intact).

3.1. Customizing the VMD Setup

If you want to change some of the default settings of VMD you can put the necessary commands into a file named
.vmdrc in your home directory. Note, that using a personal .vmdrc file turns off loading the default .vmdrc file
from the VMD installation directory, so it is usually a good idea to start customizing VMD by copying the default
.vmdrc file to your home directory and modifying it. For example I do prefer orthographic projection, a grey
background, green carbon atoms and light green flourine atoms. This is achieved by putting the following code
into your ~/.vmdrc:

# make sure, that the main menu is active
menu main on

# modify display settings
display projection orthographic
axes location off
color Display Background silver

# redefine some colors
color Name C green
color Name F lime
color Type C green
color Type F lime

3.2. Predefining Additional Items

The graphical user interface of VMD has a selection of predefined parameters (materials, color schemes, etc.) that
you can use for objects on your screen. You can create additional ones interactively, but you can also create them
in your startup script so that they are always available. For example if you want to have a material 'Glass' that is
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much more transparent than the default 'Transparent' material, then add the following code to your ~/.vmdrc:

# define a new, very transparent material 'Glass'
material add Glass
material change ambient   Glass 0.00
material change specular  Glass 0.50
material change diffuse   Glass 0.65
material change shininess Glass 0.53
material change opacity   Glass 0.15

3.3. Extending the Script and Plugin Search Path

In order to make libraries of additional Tcl scripts (=subroutines) or plugins (e.g. for reading trajectories in a new,
yet unsupported format) available to VMD you can also put some code in your ~/.vmdrc file. The following
example assumes that you have created a directory vmd in your home directory and therein the following
subdirectories scripts, scripts/tcl, scripts/extensions, and plugins:

# search for new/updated molfile plugins in $HOME/vmd/plugins/$VMDARCH/molfile
# type 'vmdinfo arch' to find your name for $VMDARCH
vmd_plugin_scandirectory [file join $env(HOME) vmd/plugins [vmdinfo arch] molfile] *.so

# add local (autoloaded) scripts to the search path
set auto_path [concat $env(HOME)/vmd/scripts/tcl $auto_path]

# command extensions (e.g. vmd_draw_vector) have to be sourced
foreach ext [glob −nocomplain $env(HOME)/vmd/scripts/extensions/*.tcl ] {
        source $ext
}
unset ext

The complete .vmdrc file is also  available for download. A Collection of several VMD script extensions , custom
plugins and so on, can be found in the Tips and Tricks part of this tutorial.

4. Loading and Displaying Configurations and Trajectories

There are several ways of how you may want to look at configurations generated by Single Point and MD
calculations. The following sections will give you some examples on how to visualize single geometries, whole
trajectories, Wannier centers, and (optionally) copies of the simulation unit cell, which can be very helpful for
systems with periodic boundary conditions.

4.1. Loading a Single Geometry

The easiest way to load molecules from CPMD calculations into VMD would be to load
the GEOMETRY.xyz  file that recent CPMD versions (3.5.x and later) generate by
default. Beginning with VMD version 1.8.2 CPMD style xyz files are supported. If you
have an older version of VMD, you have to first convert the file to a supported format,
e.g. PDB, with Babel or Open Babel (VMD has internal Babel support, if installed
correctly).
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For PWscf calculations you can use the scripts pwi2xsf.sh and/or pwo2xsf.sh to convert the respective input and
output files to the xsf format, which is supported by VMD since version 1.8.3. Alternatively, you can use the
simple pwscf2xyz.awk awk script to convert (some) PWscf output files to xyz format (this script may need some
adjustments to support older/newer versions of PWscf). Please note, that the xsf format also usually contains the
information of the supercell, which is not available for xyz files.

For the configuration on the left and the following examples, use the file al−h2o_6.xyz. You can load this file into
VMD by just typing vmd al−h2o_6.xyz and you should see something very similar to the picture on the left. In
the next sections we are trying to improve it a little bit.

4.2. Creating a Visualization

Once you have loaded a geometry into VMD, you can visualize it using a single or
multiple representations for all or a subset of the atoms. The standard visualization
method 'Lines' (see picture above) is usually best suited to quickly look at a long
trajectory or a very large system. Also it does not need a very fast 3d−accelerated
graphics hardware, but for presentations you usually want to have something more
sophisticated. For example, in the picture on the left the water atoms are selected by
'name H O' which is the short form of 'name H or name O' and visualized by a 'CPK'
representation while the aluminum is selected with 'name Al' and visualized by a 'VDW'

representation with a sphere size of 0.6. This way you can recognize the structure of your configuration more
clearly. More detailed explanations of this procedure and examples of the various representations integrated into
VMD can be found in the excellent  VMD User's Guide

4.3. Saving and Re−using a Visualization

If you have spent some time on a specific representation of your system, you would
usually like to somehow store that effort and reuse or improve it later. For that you can
use the File −> Save State... dialog. You are asked to provide a filename (using the
filename extension .vmd is recommended) which will contain the VMD script code to
reproduce the current visualization. Since it is not an exact replay of all your actions, it
will sometimes fail to give the exact same state, that you have saved, but usually it is
pretty close.

After you have saved a visualization you can reload it from the File −> Load State...
dialog or just run the script at VMD startup e.g. with vmd −e saved_state.vmd. If you
want to reuse the visualiztion with a different coordinate or trajectory file, you simply
copy the the state file and modify it with a text editor (search for the mol new
statement(s)).

For the images in this section the visualization from the previous section, al−h2o_6.vmd, was loaded and then a
'Dynamic Bonds' representation was added to emphasize the octahedral arrangement of the water molecules
(selection: 'name O or name Al', cutoff: 2.5, material: Transparent). The final visualization is also available for
download: al−h2o_6−b.vmd. Also the selection 'name O' in combination with a cutoff of 3.0 can be used for a
different way to show the octahedron.
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4.4. Viewing a Trajectory

For efficient working with VMD it is essential, that you understand how VMD processes the data. Trajectory data
is in fact handled in multiple steps. First VMD reads the 'structure', i.e. it wants to know how many atoms of
which type, with which bonds you want to display. If the bond information is missing in the file that was read in,
it tries to guess the bonds via a distance search. This information will be applied for the whole trajectory, so the
number or the ordering of the atoms must not change (thanks to the scripting capabilities of VMD, this limitation
can be worked around to some degree). In the second step VMD wants to know the evolution of coordinates for
each atom in the 'structure' during the trajectory. To achieve this with CPMD, you have several options: 1) You
can set the flag TRAJECTORY XYZ  in the &CPMD  section of your CPMD input file and then get an
additional file named TRAJEC.xyz which you can load into VMD similar to GEOMETRY.xyz. 2) You can use
the CPMD trajectory format input plugin to read TRAJECTORY  file(s) directly into VMD (supported from
version 1.8.2 onward). For that you have to first load a GEOMETRY.xyz  file to get the 'structure' information
(TRAJECTORY  files only contain coordinates, velocities and the time step number). And 3) you can convert the
TRAJECTORY  file(s) into xyz format, e.g. with the help of an external program, e.g. the perl script traj2xyz.pl

For PWscf the situation is a bit simpler: the xsf format is very flexible and also supports animations, so using
pwo2xsf.sh converter should be sufficient. If you are using VMD version 1.8.2 or earlier and cannot or do not
want to upgrade, you can also try the pwscf2xyz.awk script to convert the a PWscf output to the xyx format.

Note that you can load several trajectory files on top of each other, so you don't have to
combine them first into a single file if you want to look at a long trajectory, that has been
simulated in parts. For large trajectory files it is recommended that you activate the
option Load all at once before you click on the load button. Otherwise it can take quite a
long time to load the trajectory since VMD tries to run an animation of the trajectory
during the load process as soon as enough data is available. If you have already created
an elaborate visualization scheme and your graphics hardware is not very fast, this can
get pretty bad. If you start from a saved state script file, you should append waitfor all  to

all mol new and mol addfile commands.

One more tip: Since reading large text mode trajectories takes a lot of time, you could use the File −> Save
Coordinates... dialog to save the read in coordinates in a binary trajectory format (e.g. DCD). This file will then
load much faster (no more parsing required) and also usually takes up less diskspace. You only have to have an
.xyz file for the first timestep to provide the structure information.

4.5. How to Show Breaking and Formation of Bonds

One big problem for many programs to visualize ab initio MD trajectories is how to
handle formation or breaking of bonds. Programs that do this dynamically (e.g. Molden)
are usually not able to handle large trajectory files efficiently, while other programs (e.g.
Molekel or the default visualization of VMD) stick to the inital bond assignment. Recent
versions of VMD now offer a Dynamic Bonds representation, which will recalculate the
bonds every frame based on a given cutoff distance. In combination with an additional
VDW representation, you can easily achieve a nice dynamical view of your simulation
(see the small animation on the left an example and compare it to the animation in the

previous section where only the CPK representation was used). If you cannot get away with a single distance
cutoff for all bonds, just use several dynamic bond representations with different cutoffs on individual groups of
atoms.
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If your trajectory includes Wannier centers, the distance based bond selection will produce strange results. You
could use the selections "not name X" for the atom representations and "name X" for the Wannier centers (looks
pretty cool, if you use the Glass material and a VDW representation for the 'Wannier−atoms'. See the next chapter
for some examples).

4.6. Adding Graphics to a Visualization

For simulations with periodic boundary conditions it is frequently very helpful to show
the actual boundaries of the unit cell employed. For that VMD gives you access to
several graphics primitives that can be added to a loaded molecule. This graphics
primitives are drawn in the molecule local coordinate system and so they moved, rotated,
and resized with all the representations belonging to that molecule. For the following
example we need the custom command draw_cubic_unitcell installed. After loading the
trajectory from the files 32h2o_h3op.xyz and 32h2o_h3op.dcd we want to mark the
center of the simulation cell with a small yello ball and then show the unitcell itself. With

an edgelength of 9.956 Angstrom, you have to give the following commands:

# put a small yellow ball in the center of the box
draw color yellow
draw sphere {0 0 0} radius 0.25 resolution 20
# add simulation cell object
draw_cubic_unitcell 9.956

5. Adding Dynamic Graphics to a Trajectory

Sometimes you want to draw additional graphics the screen that show how some properties change during a
trajectory. VMD offers you access to graphic primitves like lines, spheres, cylinders, cones, trangles and text with
which you can add graphical elements to your molecule. To make these change with the evolution of the trajectory
you can use the powerful Tcl variable tracing mechanism. In this case you want to trace the variable
vmd_frame(). The following sections will give a few examples. The strategy is always the same:

write a small function that changes the graphics depending on the current frame number and an additional
property

1. 

read a list of values for the property into an array indexed by the corresponding frame number.2. 
trace vmd_frame() with that function3. 

5.1. Adding a Progress Bar for the Elapsed Time
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Although VMD shows the current frame number in the main window, it is sometimes
nicer to have an indicator of the elapsed time in the visualization window. One big
problem is, that the progress indicator should stay fixed, even if the molecule itself is
rotated. As described above, usually you 'draw' in the coordinate system of the molecule
and so the added graphics would rotate with the visualize molecule. This problem is
avoided by creating an (empty) stub molecule (by calling mol new without a file name),
fixing the position of that 'molecule' in the global coordinate system, and adding the time
bar graphics to the fixed 'molecule'. This is done by the script function display_time_bar.

After you have loaded the trajectory from the files zundel.xyz and zundel.dcd and created a nice representation
you run the following code:

# function to draw the time bar with the required options
proc do_time {args} {
# see source for explanations of the options
   display_time_bar 1.0 50.0 "fs" 0
}

# connect do_time to vmd_frame
trace variable vmd_frame(0) w do_time

# go back to the start of the trajectory
animate goto start

Now you can animate the trajectory as you like and the red line in the time bar will always the display the current
time of the simulation. You can also move the mouse and the time display should stay fixed. The file
zundel−time.vmd contains all the commands. You need to have the display_time_bar.tcl file installed properly to
make this work. Alternatively you can copy the file to the current directory and add the command source
display_time_bar.tcl to the .vmd script (or execute it manually) before you define do_time.

5.2. Display the Total Dipole Moment of the Simulation Cell

For this example some external data needs to be read in. In this case we use the
corresponding data from the DIPOLE  file created by a CPMD simulation. By executing

awk '{ print $2, $3, $4; }' DIPOLE > zundel.dip

we can extract the current total diplol moment of the simulation cell to zundel.dip. We also need to have the
following commands installed : center_of_mass and vmd_draw_vector. Now we have to load the trajectory again
and then execute the following code:

# define function to (re−)draw the dipole vector
proc do_dipdraw {args} {
    # dipdata has the center and the direction/lenght of the vector
    # dipgraph has the indices of the vector graphic elements
    global dipdata dipgraph
    set molid 0
    set frame [molinfo $molid get frame]
    if {[info exists dipdata($frame)]} then {
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        if {[info exists dipgraph]} then {
            foreach g $dipgraph {
              graphics $molid delete $g
            }
        }
        graphics $molid color yellow
        lassign $dipdata($frame) cnt vec
        #                                             scaling  res   radius
        set dipgraph [vmd_draw_vector $molid $cnt $vec 100000.0  10   0.08]
    }
}

# read in the dipole data from file
set dip [open "zundel.dip" r]
# define selection to calculate the center of mass
set sel [atomselect 0 "not name X"]
set n [molinfo 0 get numframes]
for {set i 0} {$i < $n} {incr i} {
    # advance selection to the current frame and update.
    $sel frame $n
    $sel update
    set dipdata($i) [list [center_of_mass $sel] [gets $dip]]
}
close $dip

# connect to vmd_frame
trace variable vmd_frame(0) w do_dipdraw
animate goto 0

Again the whole vmd script file is also available under the name zundel−dip.vmd.

Of course, you can combine the time bar with the dipole vector display. A vmd script file to do that is available
under the name zundel−all.vmd
NOTE:  for this simple example to work, the trajectory and the dipole file have to be written with the same
frequency.

5.3. Visualizing Changing Atom Properties with Color

This example shows two C60 molecules colliding at high temperature (500K). We
utilize the 'user' field of the atom trajectory data to store the distance of each
atom from the center of mass of its C60 molecule for each frame as a measure of
the deformation. This parameter is precomputed for the whole trajectory (so this
is extremely useful for expensive calculations) and the coloring scheme 'User' is
then used to display the results (red is closer, green is normal, blue is further
away). Again we load the trajectory (bucky.xyz and bucky.dcd) in the regular
way, visualize the Atoms as VDW spheres and Dynamic Bonds. To compute and

store the distances we create a selections for each molecule and use the integrated vector operations of VMD.
Note that a selection always returns a list of lists, so that when requesting {x y z} for the selection we directly
get the individual vectors (=coordinate lists) stored into $c which can be directly used for the vector math. To
store the result, we then have to provide a list of values for each atom in the selection. Here is the final code:

set mol 0
set left  [atomselect $mol {index < 60}]
set right [atomselect $mol {index>= 60}]
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set n [ molinfo $mol get numframes ]

for {set i 0} {$i < $n} {incr i} {
    # compute for first molecule
    $left frame $i
    set com [measure center $left]
    set dlist ""
    # loop over each {x y z} vector in $c
    foreach c [$left get {x y z}] {
        lappend dlist [veclength [vecsub $c $com]]
    }
    # set distance from COM for all atoms in selection.
    $left set user $dlist

    # now repeat for second molecule
    $right frame $i
    set com [measure center $right]
    set dlist ""
    foreach c [$right get {x y z}] {
        lappend dlist [veclength [vecsub $c $com]]
    }
    $right set user $dlist
}

The complete script of this visualization script is also available for download under the name bucky.vmd.

5.4. Modify an Atom Property Dynamically from an External File

In the next example a dissociation trajectory of an Ar3
+ molecule is shown. The color of

the VDW spheres shall indicate how the positive charge distributed between the atoms
with values ranging from 0.7 (coded blue) to 0.0 (coded red). Once more we load the
trajectory (ar3plus.xyz and ar3plus.dcd) in the regular way, visualize the Atoms as VDW
spheres, then read in the atom charges from ar3plus−charge.dat, and store them in an
array. The procedure do_charge then updates the charge field in of the atoms for the
current frame. In contrast to the previous example, the charge file is not stored per frame
but for the whole trajectory. So by tracing vmd_frame($molid) we have this function

being called at every change of the animation frame number. The VMD code to achieve this is as follows:

set molid 0
# read in charge data
set n [molinfo $molid get numframes]
puts "reading charges"
set fp [open "ar3plus−charge.dat" r]
for {set i 0} {$i < $n} {incr i} {
    set chrg($i) [gets $fp]
}
close $fp

# procedure to change the charge field from the data in $chrg
proc do_charge {args} {
   global chrg molid
   set a [molinfo $molid get numatoms]
   set f [molinfo $molid get frame]
   for {set i 0} {$i < $a} {incr i} {
       set s [atomselect $molid "index $i"]
       $s set charge [lindex $chrg($f) $i]
   }
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}

# turn on update of the charge info and coloring in each frame.
trace variable vmd_frame($molid) w do_charge
mol colupdate   0 $molid on

# set color mapping parameters
mol scaleminmax 0 $molid 0.0 0.7
color scale method RGB
color scale midpoint 0.25
color scale min 0.0
color scale max 0.7
# go back to the beginning and activate the additional feartures.
animate goto start
do_charge

The complete script of this visualization is also available for download under the name ar3plus−charge.vmd.

6. Dynamic Atom Selection

6.1. Display a Changing Number of Molecules

Although this is not a problem unique to CPMD simulations, here is one example
on how you can program VMD to recalculate the list of atoms or molecules fresh
for each displayed timestep. For the example shown on the left, a pair of solvent
separated ions (a sodium and a chloride) were selected from a (classical)
molecular dynamics simulation with 800 SPC/E waters 16 NaCl ion pairs. The
ions are represented by a VDW sphere and the first solvation shell waters with a
CPK style representation and 'regular' colors. The second solvation shell ist
transparent (cyan for the Na+ and lime for the Cl−. Finally oxygens close to the

interface between the two solvation shells are highlighted in purple or in yellow. This way you can more easily
spot the exchange in the hydration shell of the ions. As you can see from the animation, the chloride has larger
solvation shells with more exchange than the sodium and occasionally water molecules in the second solvation
shell are shared between both ions.

Now how was this done? First we need to load the trajectory from the files 800h2o−16nacl.xyz and
800h2o−16nacl.dcd and delete the default representation. Next we define a set of atomselect macros that make the
selection of the atoms much easier. Here is the block for the sodium hydration shells (the cutoff distances 3.3 and
5.5 were taken from the gNaO(r) function for this simulation).

# selection macros. this is the first part of the magic
atomselect macro hyd {name H}
atomselect macro oxy {name O}
# first and second solvation shell of Na+ and oxygens in transition
atomselect macro naox1 {oxy within 3.3 of index 2405}
atomselect macro naox2 {(oxy within 5.5 of index 2405) and not naox1}
atomselect macro naotr {(oxy within 3.35 of index 2405)
    and not (oxy within 3.25 of index 2405)}
atomselect macro nahy1 {hyd within 1.31 of naox1}
atomselect macro nahy2 {hyd within 1.31 of naox2}

Note how the hydrogens are selected with a distance criterium around the oxygen selections. This way you make
sure that you select only complete water molecules for each shell. The selection for the chloride follows the same
pattern.

Visualization and Analysis of Quantum Chemical and Molecular Dynamics Data with VMD

12



The next step is to create the representations utilizing the selection macros. Finally you have to turn on
recalculation of the selection for each representation (and we add a little trajectory smoothing to have a less jumpy
animation). This is done with the following code:

# let all selections be recalculated for each frame
# and smooth the trajectory a little bit for all representations
# that's part two of the magic.
set molid 0
set n [molinfo $molid get numreps]
for {set i 0} {$i < $n} {incr i} {
    mol selupdate $i $molid on
    mol smoothrep $molid $i 2
}
# go back to the start of the trajectory.
animate goto start

That is it. How to display all hydrogen bonds for all visible water molecule is left to you as an exercise. The full
VMD script file is also available for download under the name nacl−shell.vmd. There also is a somewhat larger
(640x480 pixel, 4.7 MByte ) rendered MPEG−1 Movie of the same animation.

6.2. Keeping Atoms or a Molecule in the Center and Aligned

There is some room for improvement in the previous example: the ion pair
rotates and moves around quite a bit (in fact it took considerable amount of time
to find an ion pair in the trajectory that stays that much in place). For the solvated
ion pair we want to keep the ion pair centered and aligned along the x−axis. For
that we calculate the translation and rotation matrices with the trans command
by straightforward vector algebra. But using the center and direction of the ion
pair directly would give a very jumpy picture. So we average both parameters
over several frames (here 20) and used the smoothed realignment instead. See the

movie on the left as an example. The code in nacl−follow.vmd differs from the previous example primarily by the
following, additional code:

proc do_realign {args} {
    global chist dhist hcount hoffs molid

    # this is the axis to align to
    set avec [vecnorm {1.0 0.0 0.0}]
    # this is the sliding window size
    set asize 20

    # initialize the cache counters
    if ([info exists hcount]) { } else {
        set hcount 0
        set hoffs  −1
    }

    # calculate center and direction of the ion pair
    set sel [atomselect $molid "index 2405 or index 2431"]
    lassign [$sel get {x y z}] na cl
    set cent [vecscale [vecadd $na $cl] 0.5]
    set dir [vecsub $na $cl]

    # store data in cache for sliding window averaring
    if {$hcount < $asize} then { incr hcount }
    incr hoffs
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    if {$hoffs>= $hcount} then { set hoffs 0 }
    set chist($hoffs) $cent
    set dhist($hoffs) $dir

    # calculate averages
    set csum [veczero]
    set dsum [veczero]
    for {set i 0} {$i < $hcount} {incr i} {
        set csum [vecadd $csum $chist($i)]
        set dsum [vecadd $dsum $dhist($i)]
    }
    set csum [vecscale [expr 1.0/[expr $hcount * 1.0]] $csum]
    set dsum [vecnorm $dsum]

    # get rotation axis.
    set rvec [vecnorm [veccross $dsum $avec]]

    # set origin and rotation
    molinfo $molid set { center_matrix rotate_matrix} \
        [list [trans origin $csum] \
             [trans axis $rvec [expr acos([vecdot $dsum $avec])] rad]]
    # clean up selections
    $sel delete
}

trace variable vmd_frame($molid) w do_realign

# zoom to fit the display when vmd is started with '−size 800 600'
scale to 0.15
# the smoothing works better with this (no discontinuity)
animate style rock

6.3. Modify a Selection During a Trajectory

You will probably have noticed that running the previous two examples in VMD needs
somewhat more cpu power to get a smooth animation. This is because all selections have
to be recomputed anew in every animation step. In cases where the selection mechanism
is even more complicated (and therefore more time consuming) you might want to find
an alternative way. Here are two suggestions: a) you compile lists of the indices of the
selected atoms with an external program, store them in a file, read them into an array and
replace the selection text in each frame; b) you compute the selection directly, but then
cache the results in an array so that subsequent viewings of the same frame are faster. In

comparison, method a) has the advantage of being faster even at the first viewing than b) but the drawback that
you have to keep and read in an additional (lengthy?) file.

In the example on the left, oxygen(s) where the excess proton is within bonding radius (1.32 Angstrom, as taken
from the radial pair distribution function) should get a yellow highlight. So we first create the representation, but
set the selection to "none". Note the index for the selection; in our case it is 2.

For method a) we compute the selecting by index strings and write them to a file (h3oplus−select.dat). For
viewing we read this file into an array and have the selection updated from this array. Here is the code to achieve
this (h3oplus−select.vmd):

# function to update the selection from the highlight array
proc do_highlight {args} {
    global highlight molid selid
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    # get the current frame number
    set frame [molinfo $molid get frame]
    # if we have data for this frame, update the selection
    if {[info exists highlight($frame)]} then {
        mol modselect $selid $molid "$highlight($frame)"
    }
}

set molid [molinfo top]
set selid 2
set n [molinfo $molid get numframes]
set highlight(0) none
# read selections from file
set fp [open "h3oplus−select.dat" r]
for {set i 0} {$i < $n} {incr i} {
    set highlight($i) [gets $fp]
}
close $fp

# hook highlight function into animation
trace variable vmd_frame($molid) w do_highlight
animate goto start

For method b) we put the code to compute the selection within the highlight function, but first check the array
whether we have already computed the selection and then use the cached value instead. This example is available
under the name h3oplus−cache.vmd:

# subroutine to update the selection of
# representation $selid and cache the results
proc do_highlight {args} {
    global highlight molid selid
    # get the current frame number
    set frame [molinfo $molid get frame]
    if {[info exists highlight($frame)]} then {
        mol modselect $selid $molid "$highlight($frame)"
    } else {
        set hl {none}
        # loop over all oxygens to count hydrogens within bondlength
        set osel [atomselect $molid "name O"]
        foreach ox [$osel list] {
            set sel [atomselect $molid "name H and within 1.32 of index $ox"]
            $sel frame $frame
            $sel update
            if {[$sel num] != 2 } {
                set hl "$hl or index $ox"
            }
            $sel delete
        }
        $osel delete
        # apply new selection and cache it
        mol modselect $selid $molid "$hl"
        set highlight($frame) "$hl"
    }
}

set molid [molinfo top]
set selid 2

trace variable vmd_frame($molid) w do_highlight
animate goto start
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6.4. Using the User Field for Computed Selections

With recent versions of VMD the user field allows to store properties for each frame for each atom and which can
be accessed in selection expressions. Using this method on the previous example one would first need to compute
the number of bonded Hydrogens and store it in the user field. Using selections for that avoids the time
consuming computations in Tcl and thus combines the advantages of both methods presented above.

# prep
set num [molinfo $mol get numframes]
set ox  [atomselect $mol {name O}]
set all [atomselect $mol {all}]

# create a selection for each oxygen atom to compute
foreach i [$ox get index] {
    set sel($i) [atomselect $mol "exwithin 1.30 of index $i"]
}

# loop over all frames, and for each frame loop over
# all oxygens and store the number of hydrogens in user
for {set n 0} {$n < $num} {incr n} {
    set bc {}
    foreach i [$ox get index] {
        $sel($i) frame $n
        $sel($i) update
        $all frame $n
        $all set user 0
        lappend bc [$sel($i) num]
    }
    $ox frame $n
    $ox set user $bc
    unset bc
}

# clean up selections
foreach i [$ox get index] {
    $sel($i) delete
}
$ox delete
$all delete
unset ox all sel i n

Now to recognize all Oxygen atoms with more than two bonded Hydrogens, we simply need to define a selection
with user > 2 and make sure that the selection is evaluated for every frame during an animation (−> Trajectory
tab in the Graphical Representations menu.

mol representation VDW 0.60000 20.000000
mol color ColorID 4
mol selection {name O and user > 2}
mol material Transparent
mol addrep top
mol selupdate 3 $mol on

The complete example is available for download: 32h2o_h3op_user.vmd.

6.5. Tracing a Dynamic Property
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Sometimes you want to show the dynamics of a process but are not able to use an animation. The trajectory_path
procedure from the VMD script library is a nice example for that and can be used for the proton transport example
from above as well, after it was adapted to allow updating the selection during the tracing of the path. Compared
to the original, trajectory_path.tcl, has two additional, optional arguments to turn on/off the selection update and
set the linewidth. The image on the left was created with the VMD script from above plus the following additional
code (32h2o_h3op_trace.vmd).

# create selection for tracing hydrogens and the h3o−plus
set hyd1 [atomselect $mol {index 85}]
set hyd2 [atomselect $mol {index 99}]
set hyd3 [atomselect $mol {index 86}]
set hyd4 [atomselect $mol {index 97}]
set hyd5 [atomselect $mol {index 98}]
set h3op [atomselect $mol {name O and user > 2}]

# draw trajectory paths
trajectory_path $hyd1 blue 0 4
trajectory_path $hyd2 green 0 4
trajectory_path $hyd3 orange 0 4
trajectory_path $hyd4 purple 0 4
trajectory_path $hyd5 ochre 0 4
trajectory_path $h3op yellow 1 4

The image demonstrates nicely and without any animation, that the excess proton 'defect' is much more movable
than the individual Hydrogen atoms due to the Grotthuss structural diffusion mechanism.

7. Visualizing Volumetric Data from Cube−Files

Apart from calculating trajectories various volumetric properties can be calculated with the CPMD program: e.g.
electron densities, spin densities, electrostatic potentials, electron localization functions (ELF), localized and
canonical (occupied) orbitals. This data can be visualized with VMD via the Gaussian cube file format. Beginning
with version 1.8.2 VMD fully supports reading atom coordinates and volumetric data in the cube file format.
Please note that some of the examples need a very recent CPMD version (3.9.1 or newer) to work properly, as i
found and fixed a few cubefile related bugs while creating this part of the tutorial (the same goes for the
cpmd2cube program, a patch relative to the latest released version from cpmd.org is available on request). VMD
version 1.8.3 and CPMD version 3.9.2 as well as the cpmd2cube version relased with it contain additional
improvements, mainly for handling non−orthogonal supercells.

For some of the aforementioned properties cube file can be directly generated from cpmd, the rest is written in a
native format which can be converted into a cube file with the help of the cpmd2cube program (available at the
download area of http://www.cpmd.org). Since the CPMD manual is not very detailed about these tasks, the
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following section will give a few CPMD input file examples alongside the suggestions for visualizations.

7.1. Electron Density and Electrostatic Potential

To proceed with the following examples, we first need a fully converged wavefunction. This example input will
generated that for an isolated water molecule in the gas phase:

&CPMD
  OPTIMIZE WAVEFUNCTION
  ELECTROSTATIC POTENTIAL
  RHOOUT
&END
&DFT
  FUNCTIONAL PBE
&END
&SYSTEM
  SYMMETRY
   0
  CUTOFF
  120.0
  ANGSTROM
  CELL
   6.0 1.0 1.0 0.0 0.0 0.0
&END
&ATOMS
*O_MT_PBE  KLEINMAN−BYLANDER
 LMAX=P
 1
 2.904516     3.000000     2.926732
*H_MT_PBE  KLEINMAN−BYLANDER
 LMAX=S
 2
 2.900437     3.000000     3.897528
 3.841176     3.000000     2.671532
&END

By adding the keywords RHOOUT  and ELECTROSTATIC POTENTIAL  the electron density and the
electrostatic potential will be written to files named DENSITY  and ELPOT , respectively, at the end of the
wavefunction optimization. Note the rather high cutoff of 120ryd which is not really required, but helps to get
smooth surfaces. Since we want to re−use this restart file as base for further calculations, please rename it from
RESTART.1 to RESTART. With RESTART WAVEFUNCTION COORDINATES  (Note: no LATEST) all
further calculation will always read in this 'high quality' restart and it will not be overwritten. Finally we need to
convert the two volumetric files to cube files by:

cpmd2cube.x −o h2o−dens −dens DENSITY
cpmd2cube.x −o h2o−pot  −dens ELPOT

As a result you will get the files h2o−dens.cube and h2o−pot.cube.

To visualize volumetric data in VMD you currently have two options: Isosurfaces and Volume Slices. The two
images in the top left of this section give an example for both styles. The upper image shows in addition to a CPK
model of the water molecule an isosurface of the electron density (for &rho; = 0.05), the lower image a volume
slice through the electrostatic potential (for y = 0.5). The CPMD input (h2o−dens−pot.in), the pseudopotential
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files (O_MT_PBE, H_MT_PBE), the resulting cube files (h2o−dens.cube, h2o−pot.cube) and a combined VMD
script file (h2o−dens−pot.vmd) are available for download, so that you can experiment with it.

VMD version 1.8.3 introduces the Volume coloring method (for OpenGL implementations that support it), which
can be used to colorcode the surface by the value of the electrostatic potential at the position of the surface, i.e.
color−map the electrostatic potential to the surface. The value range of the colormap can be adjusted via the Color
Scale Data Range fields in the Trajectory  tab of the Isosurface representation. Note: that for a 'properly
symmetric' behavior the electrostatic potential from CPMD calculations needs to be corrected, e.g. via the
trimcube utility. Downloadable example files: h2o−dens.cube, h2o−pot−norm.cube, and h2o−pot−map.vmd.

7.2. Canonical and Localized Orbitals

 To calculate the canonical (i.e. projected to an atomic basis set)
and localized orbitals for our water molecule we need to do a
properties calculation starting from the previously generated
wavefunction. Both sets of orbitals can be calculated
individually as well as simultaneously (as done here). Note that
when calculating orbital cube files, especially for localized
orbitals, the default cube files contain a lot of unneeded data, so
that using the tr imcube uti l i ty, or the −trim  option to

cpmd2cube is highly recommended to save disk space and reduce the memory requirements of VMD.

For the localized orbitals the keywords LOCALIZE  and WANNIER WFNOUT  are required. This generates a
series of files with the names WANNIER_*.* which have to be converted to cube format with cpmd2cube.x −o
h2o−local WANNIER_1.1. Note that you must not use the −dens option here.

For the projected orbitals the CUBEFILE ORBITALS  keyword (plus the two additional lines specifying how
many and which orbitals shall be written) is required. This will generate a series of cube files with the names
PSI.*.cube, that can be read into VMD directly.

Alltogether the first part of the CPMD input now contains:

&CPMD
  PROPERTIES
  RESTART WAVEFUNCTION COORDINATES
  WANNIER WFNOUT ALL
&END
&PROP
 LOCALIZE
 CUBEFILE ORBITALS HALFMESH
  4
  1 2 3 4
&END

The picture on the left demonstrates the localized orbitals. Here all cube files have been read in on top of each
other and visualized with an isosurface (blue for the lone pairs, green for the OH−bonds). The picture on the right
shows the HOMO of the water molecule. Here the two different phases are visualized by creating two
repesentations from the same data set and just using isovalues with opposite sign for each of them. The input and
cube files used in this section are: h2o−orbs.in, h2o−local−1.cube, h2o−local−2.cube, h2o−local−3.cube,
h2o−local−4.cube, h2o−orbs−local.vmd, h2o−homo.cube, and h2o−homo.vmd.
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7.3. Electron Localization Function (ELF)

The electron localization function (ELF) is a tool to describe chemical bonding. It
provides an alternative look into chemical bonding and complements the picture gained
by looking at the densities and orbitals. The correlation between ELF and chemical
bonding is a topological and not an energetical one. So ELF can be said to represent the
organization of chemical bonding in direct space. Chemical information can be obtained
from ELF attractors taking the other topological elements into account as well. The
attractors can be attributed to bonds, lone pairs, atomic shells and other elements of
chemical  bonding.  For more detai ls  p lease consul t  the ELF homepage at

http://www.cpfs.mpg.de/ELF/.

To calculate ELF with CPMD we need to add the keyword ELF PARAMETER  to the &CPMD  section of our
input file. The resulting file named ELF  is a density file similar to DENSITY  and has to be converted to cube
format with cpmd2cube. The picture on the left shows the ELF of our water example with an isovalue of 0.85.
When increasing this value you can see, that the two lone pairs of the water are only partially localized. The
relevant downloadable files are: h2o−elf.in, h2o−elf.cube, and h2o−elf.vmd.

7.4. Manipulation of Cube Files / Response to an External Potential

Sometimes you need to postprocess the cube files, e.g. by calculating the difference between to densities. This can
be done with the cubman utility from the Gaussian software suite. In this example we want to visualize the
response of the a water molecule to an external potential perpendicular to the H−O−H plane.

For this purpose we first create an electron density cube file from the RESTART file of the previous examples
with a simple properties job (cf. h2o−dens−nopot.in). The resulting file RHO_TOT.cube is renamed to
h2o−nopot−dens.cube.

Now we need to create an unformatted fortran data file (extpot.unfo.grid) with the external potential on the grid
points of the real space mesh of the CPMD job. In the current example this is a 80x80x80 grid so the fortran file
has to use the same grid (e.g. in mkextpot.f). We now create a new wavefunction with the keyword EXTERNAL
POTENTIAL (h2o−extpot.in), create another density cube file, and rename it to h2o−extpot−dens.cube.

Finally we use the cubman utility (see below for an example) to create die difference of the two densities
(h2o−extpot−resp.cube) and visualize it. Here is a snapshot of the interactive dialog.

# cpmd−vmd/files> cubman
Action [Add, Copy, Difference, Properties, SUbtract, SCale]? su
First input? h2o−nopot−dens.cube
Is it formatted [no,yes,old]?  yes
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Opened special file h2o−nopot−dens.cube.
Second input? h2o−extpot−dens.cube
Is it formatted [no,yes,old]?  yes
Opened special file h2o−extpot−dens.cube.
Output file? h2o−extpot−resp.cube
Should it be formatted [no,yes,old]?  yes
Opened special file h2o−extpot−resp.cube.

The image on the left shows the result. The arrow illustrates the direction of the electrostatic field represented by
the external potential and the two colored isosurfaced show areas of reduced (green) and increased (yellow)
electron density, the transparent isosurface represents the total electron density. The formation of an induced
dipole moment in the water molecule is clearly visible. The figure was created with the VMD script
h2o−extpot−resp.vmd.

7.5. Bulk Systems

(click here or on the image to view a larger version)

Creating and visualizing volumetric data is not restricted to isolated molecules, but can also be used for bulk
systems, for example a bulk water system. Occasionally you have to make sure, that the cube file is properly
centered and that all atoms are inside the density/simulation box. The command lines to get the cube files used
here were:

cpmd2cube.x −o h2o−dens −inbox −center −dens DENSITY
cpmd2cube.x −o h2o−elpot −inbox −center −dens ELPOT

After visualizing the water molecules you can add one or more isosurface representations in order to display
different isosurfaces from the same data set: blue (= negative electrostatic potential), red (= same value only
positive), pink (=even more positive isovalue), and green (= electron density). Again the full saved state and the
data file are available for download with the filenames h2o−cube.vmd, h2o−dens.cube, and h2o−elpot.cube.

7.6. Animations with Isosurfaces
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(click here or on the image to view a larger version)

With the help of a little bit of VMD scripting we can also do an animation with volumetric data, where the the
isosurface is changed in each frame. In the present example, we have a simulation, in which a hydrogen molecule
is shot at a double layer of gold atoms with very high velocity. We then need a cube file for each frame, that
should be animated, therefor we need to instruct the CPMD program to write a (different) restart for each of these
frames. This is done by using the STORE and RESTFILE  keywords in the CPMD input file (for this example
STORE was set to 20 and RESTFILE to 500 with a TIMESTEP of 2 a.u.). Now during the simulation (which
should not exceed 10000 steps), a new restart is written every 20 steps.

The next step is to convert all of these restarts into cube files. This can done by doing one step of wavefunction
optimization and using the keyword RHOOUT  to write a DENSITY  file, which then can be converted into a
cube file with cpmd2cube.x. The first part of the CPMD input thus is:

&CPMD
  OPTIMIZE WAVEFUNCTION
  RESTART WAVEFUNCTION COORDINATES
  MAXSTEP
   1
  RHOOUT
&END

The conversion can be automated with:

for s in `seq 1 25`
do \
  rm −f RESTART
  ln −s RESTART.$s RESTART
  && ./cpmd.x au−dens.in
  && ./cpmd2cube.x −rho −o au−dens−$s DENSITY
done

We now load all those cube files in the correct order into VMD and create a visualization including an isosurface.
To switch the volumetric data set during the animation, we write a small tcl procedure, that updates the
representation and hook it into the animation loop by tracing vmd_frame. To make this as transparent as possible,
we record the molecule id and the (unique) representation name of the isosurface in question in two global
variables.

set updmol [mol new {au−dens−0.cube} type cube waitfor all]
...
set updrep [mol repname top 3]
...

proc update_iso {args} {
    global updmol
    global updrep

    set repid [mol repindex $updmol $updrep]
    if {$repid < 0} { return }
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    set frame [molinfo $updmol get frame]
    lassign [molinfo $updmol get "{rep $repid}"] rep
    mol representation [lreplace $rep 2 2 $frame]
    mol modrep $repid $updmol
}

trace variable vmd_frame(0) w update_iso

There is one drawback: you have to know, which index the isosurface visualization has. But that is easily done (if
you can count and remember, that the first representation id is 0), since you start from a script anyways. Any
subsequent changes to the representations should be transparent to the script. You can download the full VMD
script au−iso.vmd, and an archive with the cubefiles au−dens−cube.tar.gz (25MB).

7.7. Volumetric data from Gaussian

In this section we take a small detour and discuss the visualization of volumetric outputs generated with the
Gaussian electronic structure program. Since the cube file format was originally used in Gaussian visualizations
like shown above are not restricted to CPMD calculations. The following are a few examples for using the
Gaussian program, but this should be adaptable to other electron structure programs as well.

The most convenient way of creating cube files from a gaussian calculation is to use the
cubegen and cubman programs. Prerequisite is that you have saved a checkpoint file
from your calculation by adding a %Chk=filename.chk statement to the header of your
gaussian input file. The (binary) checkpoint file needs to be converted into a formatted
file using the formchk  uti l i ty ( formchk fi lename.chk wil l produce the fi le
filename.fchk).

After these preparations we can finally start to generate some useful cube files. We start with the electron density
of a chromium−(III)−ion surrounded by 6 water molecules (top left). This was created from the formatted
checkpoint file using the command:
cubegen 0 Density=scf cr−h2o_6−dubl.fchk cr−h2o_6−dens−dubl.cube 60
For visualizing the density a single isosurface representation (after visualizing the atoms itself) with a small
positive isovalue, e.g. 0.05, is sufficient (cr−h2o_6−dens.vmd).

The next example shows orbital number 40 (the third highest occupied orbital) from the
same calculation. Here the command to create the cube file was: cubegen 0 MO=40
cr−h2o_6−dubl.fchk cr−h2o_6−orb−40.cube 60 For this visualization two isosurface
representations are needed now, one for positive and one for negative values (here: 0.01
and −0.01, cr−h2o_6−orb−40.vmd). If you want to show multiple different orbitals, you
can either load several of these single orbital cube files simultaneously, or create a
multi−orbital cube file by running a gaussian cube job (see the gaussian manual on how
to do it). VMD can load these multiple orbital files as well as multiple cube file on top of
each other and will let you select the individual volumetric data sets in a pop−up menu for the graphical
representation menu.
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 The final example shows the location of unpaired electrons by
calculating the difference between alpha− and beta−electron
spin density. For this two open shell Hartree−Fock calculations
were performed (one for the dublett state and one for the
quartett state), density cube files created and then the density
difference calculated by running cubman in subtract mode on
both  cube  f i l es  and  thus  c rea t ing  a  th i rd  cube  f i l e
(cr−h2o_6−dens−diff.cube). You can see the the single

unpaired electron in the dublett state is confined to a Chromium d−orbital, whereas the three unpaired electrons of
the quartett state are rather delocalized.

8. Using Data Processing to Tailor Data for VMD

In some cases the existing data is not (well) suited to be read in for a VMD visualization, so it needs to be
augmented or converted using external programs. Here are some examples.

8.1. Visualizing Path−Integral Trajectories

 In path integral simulations each atom is represented by several
replica, so reading in that data directly would create produce
several molecules positioned (almost) on top of each other,
which creates a somewhat cluttered visualization (see image on
the right). Therefore the atom positions are better taken as the
average of the replica and then a different, lucid visualization
can be used. The perl script traj2xyz.pl will automatically detect
path−integral runs from the fact, that for technical reasons the

GEOMETRY.xyz file will only contain the geometry information for a single set of replica atoms, and write out
the average replica positions at the beginning of each xyz record. The individual replica coordinates can be
recognized, since the script will prepend their name with an X. Any selection with and not name "X.*"  with
ignore them. The processed xyz file (nh3−pimd.xyz) and the visualization (nh3−pimd.vmd) are available for
download.

8.2. Extracting the Geometry Information from old CPMD Output Files

When running geometry optimizations, having a look at the 'trajectory' of the optmization is often desirable.
Newer CPMD versions support the XYZ  flag to the OPTIMIZE GEOMETRY  keyword to create an xyz−file
that can be easily visualized, but for outputs from older CPMD versions (or in cases where setting the XYZ
keyword was overlook or forgotten), one may want to extract the coordinates from the output file. Doing this with
a text editor can be quite tiresome. The perl script out2xyz.pl will try to do this for you. Of course this script also
works (or at least it should) for other jobs that contain geometry information.

8.3. Removing Unneeded Parts From a Cube File
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Cubefiles can become quite large, especially for very large systems. This can put a
severy limit on how many of them can be visualized at the same time or even stored on
the same disk. Frequently only a part of them is needed for the visualization, for example
with surface slabs, isolated molecules or when looking at localized orbitals. The
trimcube utility presented here (trimcube.c) allows to do this almost automatically, by
trying to cut off parts of a cube file, whose absolute values are all below a given
threshold. The version of cpmd2cube distributed together CPMD v3.9.2 contains this
feature as well, so that you can get the small file immediately. The image on the left

shows the original box and then the subboxes for each localized orbital. The file size reduction in this case was
more than a factor of 35.

trimcube: cut out a part of a cubefile.

usage: trimcube [options] <input cube> [<output cube>]

available options:
−h[elp]                 print this info
−t[hresh] <value>       set trim threshold to <value>, (default 0.005)
−n[orm]                 normalize so that the integral over the cube is zero.

use '−' to read from standard input
program writes to standard output if not output file is given

8.4. Extract Some Coordinates with Bounding Box Information

To following script provides the command extract_sel (extract_sel.tcl) will write a pdb file from a given
selection. The special feature is, that it will shift the selection close to the origin, compute a minimal box that will
fit this selection and store it in the CRYST record of the pdb file. Very useful for creating a QM subsystem from a
classical MD simulation.

proc extract_sel { sel pdbfile {addbox {2.0 2.0 2.0}} } {
  set molid [$sel molid]

  # save original box dimensions and selection coordinates
  set origbox [molinfo $molid get {a b c alpha beta gamma}]
  set origxyz [$sel get {x y z}]

  # get the min/max coordinates from the selection
  set minmax [measure minmax $sel]
  # subtract the coordinates of the lower left front corner.
  $sel moveby [vecscale −1.0 [lindex $minmax 0]]
  # and shift by half the addbox vector to the middle
  $sel moveby [vecscale 0.5 $addbox]

  # box shall be the size of the selection plus the addbox vector
  set box [vecsub [lindex $minmax 1] [lindex $minmax 0]]
  set box [vecadd $addbox $box]
  # update the box size so the pdbfile will get that info
  molinfo $molid set {a b c alpha beta gamma} "$box 90.0 90.0 90.0"
  $sel writepdb "$pdbfile"

  # undo the coordinate shifts from above and reset the box
  $sel set {x y z} $origxyz
  molinfo $molid set {a b c alpha beta gamma} $origbox
}
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8.5. Creating 3d−Ramachandran Histograms

 The ramaplot tool in VMD is very useful for tracking changes
of the protein backbone angles from a trajectory. But to get an
impression of the statistical distribution of some configurations,
the 'show all t imesteps' mode in ramaplot can be easily
misleading (see the picture on the right). In this example we
have a short trajectory of a 12−ALA alpha−helix which is in fact
stable during the time of the simulation. A histogram of the data
would put an equal weight to each data point and with a

so−called 'rubbersheet' representation (see picture on the left) one could could identify the regions of statistical
relevance much better and see, that the alpha−helix does indeed not fall apart significantly.

To achieve this, we have to first create a histogram of the alpha−carbon angles and then visualize it. Since VMD
does not support this internally, we create an empty dummy molecule and add the surface to it using VMDs
graphics primitives. With the following script code, we can create the raw histogram.

    set sel [atomselect top {protein and name CA}]
    set res 36
    set w [expr ($res − 1.0)/360.0]

    set n [molinfo [$sel molid] get numframes]
    for {set i 0 } { $i < $n } { incr i } {
        $sel frame $i
        $sel update

        foreach a [$sel get {phi psi}] {
            set phi [lindex $a 0]
            set psi [lindex $a 1]
            incr data([expr int(($phi + 180.0) * $w)],[expr int(($psi + 180.0) * $w)])
        }
    }

We then have to normalize the histogram and create the surface by drawing four triangles between the corners of
each square of data points and their mid−point. We also use the z−value of the mid−point to colorize the triangles
according to a BGR color scale. so that the bottom is blue and the peaks will be green with red tips:

    color scale method BGR
    color scale max 0.9
    color scale midpoint 0.3
    for {set i 0} {$i < $res} {incr i} {
        for {set j 0} {$j < $res} {incr j} {

            set i2 [expr $i + 1]
            set j2 [expr $j + 1]

            set x1 [expr ($i  − (0.5 * $res)) * $len]
            set x2 [expr ($i2 − (0.5 * $res)) * $len]
            set xm [expr 0.5 * ($x1 + $x2)]

            set y1 [expr ($j  − (0.5 * $res)) * $len]
            set y2 [expr ($j2 − (0.5 * $res)) * $len]
            set ym [expr 0.5 * ($y1 + $y2)]
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            set zm [expr ($data($i,$j) + $data($i2,$j2) \
                        + $data($i2,$j) + $data($i,$j2)) / 4.0]

            graphics $mol color [expr 17 + int (200 * $zm)]

            graphics $mol triangle "$x1 $y1 $data($i,$j)"   \
                     "$xm $ym $zm" "$x2 $y1 $data($i2,$j)"
            graphics $mol triangle "$x1 $y1 $data($i,$j)" " \
                     $x1 $y2 $data($i,$j2)" "$xm $ym $zm"
            graphics $mol triangle "$x2 $y2 $data($i2,$j2)" \
                     "$x2 $y1 $data($i2,$j)" "$xm $ym $zm"
            graphics $mol triangle "$x2 $y2 $data($i2,$j2)" \
                     "$xm $ym $zm" "$x1 $y2 $data($i,$j2)"
        }
    }

Completed with a nice border and some labels the full code can be put into a separate subroutine, so that the code
to create the picture on the left becomes:

mol new {12−ala.pdb} type pdb waitfor all
mol addfile {12−ala.dcd} type dcd waitfor all
set sel [atomselect top {resid > 1 and resid < 12 and name CA}]
mk3drama $sel

The VMD script code is available for download under mk3drama.tcl. This subroutines also turns off, but does not
delete the originally loaded molecule(s), so you can in fact create multiple histograms from different selections
and, e.g., view them in turn by clicking on the 'D' symbols in the main VMD window. The visualization and the
data files are available under 12−ala−rama.vmd, 12−ala.pdb, and 12−ala.dcd.

9. Misc Tips and Tricks

This chapter is a collection of (hopefully) useful odds and ends that came up while working on these pages and
with VMD in general.

9.1. Collected 'draw' Extensions

The following is a collection of extensions to the draw command. All of them return a
list of graphics ids for the graphics primitives they were build of. When stored in a
variable, they can be selectively deleted like in the following example (a more elaborate
version is availiable for download as test−draw−ext.vmd):

# draw one blue prism and a red vector on top of it
set gidlist [draw prism {−0.7 −0.5 0.0} {0.7 −0.5 0.0} {0.0 1.0 0.0}]
draw color red
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append gidlist " " [draw vector2 {0.0 0.0 0.0} {0.0 0.0 2.0} 1.0 20]

# draw a green sphere
draw color green
set sphere [draw sphere {0.0 0.0 −2.0} radius 2.0 resolution 30]

# delete only the sphere.
draw delete $sphere

The individual extensions are:

delete [<gid> [<gid>] ...] (vmd_draw_delete.tcl)
This replaces the regular draw delete command with a version that can handle multiple ids and lists as
arguments.

arrow  {x1 y1 z1} {x2 y2 z2} [<scale> <resolution> {<radius>}] (vmd_draw_arrow.tcl)
This is an updated version of the draw arrow  example from the VMD User's Guide, which returns the
graphics ids of the components. The optional third argument allows to scale the size of the vector.

vector {x1 y1 z1} {x2 y2 z2} [<scale> <resolution> {<radius>}] (vmd_draw_vector.tcl)
This is similar to draw arrow , but the two vectors specify the center of the vector and the direction.

vector2 {x1 y1 z1} {x2 y2 z2} [<scale> <resolution> {<radius>}] (vmd_draw_vector.tcl)
This is another version of an arrow, but now the two vectors specify the basepoint and the direction.

prism {x1 y1 z1} {x2 y2 z2} {x3 y3 z3} [<thickness>] (vmd_draw_prism.tcl)
This is basically like draw triangle but the optional parameter gives the "thickness" of the triangle.

vecfield <list of lists> [<scale> <resolution> {<radius>}] (vmd_draw_vector.tcl)
This is a wrapper around draw vector that processes a list of pairs of coordinate triples ({{{x1_1 y1_1
z1_1} {x2_1 y2_1 z2_1}} {{x1_2 y1_2 z1_2} {x2_2 y2_2 z2_2}} ...}) for creating a large number of
vectors conveniently.

arrowfield  <list of lists> [<scale> <resolution> {<radius>}] (vmd_draw_arrow.tcl)
This is is like draw vecfield only that the arguments follow the draw arrow  conventions.

unitcell <options> (vmd_draw_unitcell.tcl)
This will draw add a unitcell graph to the top molecule.
Available options:
cell (vmd|auto|{a b c alpha beta gamma}), default:"vmd"

"vmd" will use the internal values
"auto" will build a orthogonal unitcell based on 'measure minmax {all}'
else a list of a,b,c,alpha,beta,gamma will be assumed.

origin ({x y z}|auto)
default: {0.0 0.0 0.0} or "auto" with "cell auto"

style (lines|dashed|rod) default: line

width 'width' of the lines/rods, default: 1.0

resolution  resolution of cylinders/spheres for 'style rod',default: 8

9.2. Using a Different Default Visualization

Sometimes one would want to have VMD start with a different default visualization. While this is not directly
supported, something very similar can be achieved by tracing either the vmd_initialize_structure or the
vmd_trajectory_read variable, which will be triggered when the loading of a new molecule starts or when it is
finished, respectively. The following example code, when placed into your .vmdrc file, will add a new
representation as defined in the my_def_viz procedure to the newly loaded molecule:

# delete the default visualization and create another one
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proc my_def_viz {args} {
   lassign $args fname molid
   mol delrep 0 $molid
   mol color Type
   mol representation CPK 1.000000 0.300000 19.000000 16.000000
   mol addrep $molid
}

# add 'default visualization' hack for the first three molecules.
trace variable vmd_read_trajectory(0) w my_def_viz
trace variable vmd_read_trajectory(1) w my_def_viz
trace variable vmd_read_trajectory(2) w my_def_viz

Note that this 'hack' does not work for molecules loaded from the commandline as they are loaded, before .vmdrc
is processed. Also, in case of vmd_init_structure the default visualization (Lines) will still be added to the
molecule, as it will be added after my_def_viz has been processed so that there is no chance to delete there. In the
case of vmd_read_trajectory the new visualization will be created after the whole file has been read, which may
not be what you want, if you want to see the new visualization alread during the loading of the trajectory.

WARNING: Visualizations other then Line can put a severe strain on your available graphics and memory
resources when loading very large molecules or structures.

9.3. Changing the Default vdW Radii

VMD does not know the van der Walls radii for many atom types. Since there are not too many of them in
biomolecules, it is usually not a big problem. Also the radius can be changed via the script interface so you can
change it later, anyways. If you are not working on/with biomolecules, that can become somewhat cumbersome,
to always have to reset the values to what you want, so one may want to change the defaults. Using (almost) the
same method as in the previous example this can be done on loading a new structure. The following example
code, when placed into your .vmdrc file, will reset the vdW radii for the first three molecules to the values in the
table. The entry on the left is a string handed to atomselect and the entry on the right is the corresponding radius.
Please note, that the less specific selections have to come first, so they do not override the more specific ones. Of
course this is not restricted to atom names: you can use any selection string you like.

# example to change the default VDW radii
# function to apply the radii on loading a structure
proc my_set_def_vdw {args} {
  lassign $args fname molid
# define list of selections and matching radii

    {name H }  { 1.0 }  {name C }  { 1.5 }  {name N }  { 1.4 }  {name O }  { 1.3 }  {name F }  { 1.2 }  {name P }  { 2.0 }  {name S }  { 1.9 }  {name Cl}  { 2.5 }  }
  foreach {selstr rad} $my_def_vdw {
     set my_sel [atomselect $molid "$selstr"]
     $my_sel set radius $rad

trace variable vmd_initialize_structure(0) w my_set_def_vdw
trace variable vmd_initialize_structure(1) w my_set_def_vdw
trace variable vmd_initialize_structure(2) w my_set_def_vdw

9.4. Reloading the Current Trajectory
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When monitoring a running simulation, you may want to update the coordinates from the currently written file
without having to recreate the visualization or exiting VMD. The following reload procedure (reload.tcl) will
delete all frames and then reload the last coordinate file for the current top molecule preserving the current
visualization and its orientation and scaling. reload also supports the waitfor  option of the mol load command.

proc reload {args} {
    lassign $args arg1 arg2

    set viewpoints {}
    set mol [molinfo top]

    # save orientation and zoom parameters
    set viewpoints [molinfo $mol get {
        center_matrix rotate_matrix scale_matrix global_matrix}]

    # delete all frames and (re)load the latest data set.
    animate delete all
    set files [lindex [molinfo $mol get filename] 0]
    set lf [expr [llength $files] − 1]

    if {$arg1 == "waitfor"} {
        mol addfile [lindex $files $lf] \
            type [lindex [lindex [molinfo $mol get filetype] 0] $lf] \
            $arg1 $arg2
    } else {
        mol addfile [lindex $files $lf] \
            type [lindex [lindex [molinfo $mol get filetype] 0] $lf]
    }

    # restore orientation and zoom
    molinfo $mol set {center_matrix rotate_matrix \
                      scale_matrix global_matrix} $viewpoints
}

9.5. Visualize a Trajectory With a Changing Number of Atoms or Bonds

As already stated in the introduction to the visualization of trajectories , the internal design of VMD does not
allow for changes of bonds and number of atoms during a trajectory. In case of breaking bonds, this can be
handled most of the time by using the Dynamic Bonds representation. But if you want to have a changing number
of atoms or display only specific bonds (e.g. as given in specific psf files), then one needs some extra scripting
magic, to make this work with VMD. For example one can load each individual frame as a separate molecule and
then define a new procedure molmovie (molmovie.tcl) to turn on only one of them sequentially and thus create an
animation.

# the molmovie procedure creates an animation by
# sequentially turning the molecules on and off
# default is to wait a 500 miliseconds between 'frames'
proc molmovie {{loops 10} {delay 500}} {
    global molmovie_last

    set nmols [molinfo num]
    if {![info exists molmovie_last]} {
        set molmovie_last [expr $nmols − 1]
    }

    for {set i 0} {$i < $loops} {incr i} {
        for {set n 0} {$n < $nmols} {incr n} {
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            display update
            display update ui
            mol on $n
            mol off $molmovie_last
            set molmovie_last $n
            after $delay
        }
    }
}

# example use of molmovie command
# load frames as separate molecules
for {set i 0} {$i < 15} {incr i} {
    mol new [format "zundel−frame−%02d.pdb" $i]
}

# now disable displaying all molecules
for {set i 0} {$i < [molinfo num]} {incr i} { mol off $i }

# run animation for two loops
molmovie 2

The upper example are just some frames of the zundel ion movie from the beginning of the tutorial
(zundel−frames.tar.gz), the lower example is more elaborate and from a simulation, where the crossing of the
periodic boundaries of long molecules requires new connectivity information in each step after wrapping all atom
positions back into the unitcell (psf−molmovie−example.vmd). To get a uniform visualization for all frames, it
utilizes the clone_reps command. The data for this example is also available: psf−molmovie−example.tar.gz (1
MByte).

9.6. Set the Unit Cell Information for a Whole Trajectory

Some coordinate file formats (e.g. trr, xtc, some versions of dcd, pdb, cube, or xsf) contain information about the
shape and dimensions of the current unit cell. If this is not available or VMD does not support reading the unit cell
information for a given file, it is required to set this manually if display of periodic images is desired. For a
trajectory, this can become quite tedious, as the unit cell information needs to be set for every frame. The
following set_unitcell procedure (set_unitcell.tcl) will make this more convenient for simulations with fixed cell
dimensions.

proc set_unitcell {a b c {molid top} {alpha 90.0} {beta 90.0} {gamma 90.0}} {

    if {![string compare $molid top]} {
        set molid [molinfo top]
    }

    set n   [molinfo $molid get numframes]
    for {set i 0} {$i < $n} {incr i} {
        molinfo $molid set frame $i
        molinfo $molid set {a b c alpha beta gamma} \
            [list $a $b $c $alpha $beta $gamma]
    }
}

9.7. Directly Print the Current Visualization

VMD does not have an internal Print This Now facility, but it can be easily implemented using the integrated
rendering capabilites the following is just a rough example which can probably rather easily expanded into a print
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dialog plugin.

proc hardcopy { {printer "ps"} {renderer "TachyonInternal"}} {

# set the background temporarily to white to save ink and money.
    set oldbg [colorinfo category Display Background]
    color Display Background white

# temporary files
    set tga {/tmp/.hardcopy.tga}
    set ps  {/tmp/.hardcopy.ps}

    render $renderer $tga
    exec convert $tga $ps
    exec lpr −P$printer $ps
    exec rm −f $tga $ps

# reset background color
    color Display Background $oldbg
}

After sourcing or (auto−)loading this procedure you only have to type hardcopy to print the current visualization.
The first argument selects the printer (default is 'ps') and the second the renderer (for this simple script only
'snapshot' and 'TachyonInternal' work). Note: this procedure assumes that you are running on a Unix−like
operating system and have the ImageMagick tools installed. A file with this subroutine, hardcopy.tcl, is also
available for download.

9.8. Transferring a Visualization from a Molecule to Others

If you have several molecules loaded, you sometimes want to re−use the same (elaborate) visualization that you
have created for one molecule for the other molecules. This can be achieved by deleting the current list of
representations and then read out and apply the representations from another molecule using the mechanism also
used by the 'Save State' functionality. This can be easily put into a tcl procedure. The file clone_reps.tcl provides a
new command clone_reps which takes the two the molecule ids as arguments. So "cloning" the visualization from
molecule 0 to molecules 2 and 3 becomes:

clone_reps 0 2
clone_reps 0 3

This can also be easily called from a small Tk/TCL GUI (clonerepgui.tcl), which can be registered to the
extensions menu. See the next section on how to create and use it.

9.9. Adding a TCL−Plugin to the Extensions Menu

VMD does not only include the TCL−interpreter, but also the Tk−GUI−library which
can be used to create graphical user interfaces for your scripts. In this example a small
GUI frontend to the clone_reps.tcl script shall be added to VMD's extensions menu.

We start by creating a namespace, defining per−namespace global variables, and providing a package name and
version. In this case we need to share access to the base widget of the gui and the two molecule ids.

package provide clonerepgui 1.0

namespace eval ::CloneRep:: {
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    namespace export clonerepgui

    variable w;                # handle to the base widget.

    variable fromid  "0";      # molid of the molecule to grab
    variable toid    "1";      # molid to clone the representations to

}

Now we need to provide a procedure ::CloneRep::clonerepgui that will create the GUI and a few callback
functions for the active elements of the GUI (e.g. the buttons). Since this should not become a general Tk/TCL
tutorial, we will concentrate on one small example (see the comments in the script file clonerepgui.tcl for some
more info): the callback for the Clone button. We import the two global variables with the molecule ids and then
call the clone_reps procedure explained above.

proc ::CloneRep::CloneRepDoClone { args } {
    variable fromid
    variable toid

    clone_reps $fromid $toid
}

Since we want to register the GUI in the Extensions menu, we also have to provide a callback function, that will
create the GUI and return a handle to the main widget.

proc clonerepgui_tk_cb {} {
  ::CloneRep::clonerepgui
  return $::CloneRep::w
}

To finally register the plugin with the main VMD GUI, we have to put the following code into our .vmdrc file.

if { [catch "package require clonerepgui" msg] } {
  puts "CloneRep plugin could not be found:\n$msg"
} elseif { [catch {menu tk register clonerepgui clonerepgui_tk_cb} msg] } {
  puts "CloneRep plugin could not be registered:\n$msg"
} else {
  puts "CloneRep activated"
}

As usual the files clone_reps.tcl and clonerepgui.tcl are available for download.

9.10. Turn Off Output in Analysis Scripts

Tcl commands run from the VMD command prompt send their return values also to the standard output (i.e. the
screen). This can be annoying if not impeding the execution speed when running large analysis scripts. Simply
closing stdout does not work in this case (you'll probably get a segmentation fault or worse), but since interative
processing is disabled for subroutines, you can execute it from a subroutine. So instead of running vmd −dispdev
text −e get−his.vmd which would produce the following output.

Info) Using plugin gro for structure file AChE.gro
Info) Using plugin gro for coordinates from file AChE.gro
Info) Determining bond structure from distance search ...
Info) Finished with coordinate file AChE.gro.
Info) Analyzing structure ...
Info)    Atoms: 43518
Info)    Residues: 12237
Info)    Waters: 11700
Info)    Segments: 1
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Info)    Fragments: 11701   Protein: 1   Nucleic: 0
0
atomselect0
{41.4300003052 37.7299995422 43.4099998474} {45.8900032043 42.5899963379 48.6999969482}
4.46000289917 4.85999679565 5.28999710083
6.46000289917 6.85999679565 7.28999710083
Info) VMD for LINUX, version 1.8.2 (December 4, 2003)
Info) Exiting normally.

You can get rid of the unwanted red part, i.e. the return values, by executing a small wrapper script instead
(source_silent.tcl):

# define subroutine
proc source_silent {args} {
    foreach f $args {
        source $f
    }
}

# execute the original script
source_silent {get−his.vmd}

9.11. Automatically Turn on TCL mode in (X)Emacs for .vmd Files

To have (X)Emacs recognize .vmd files as tcl code you have to add the following code to your ~/.emacs file:

(setq auto−mode−alist
  (append '(("\\.vmd$"  . tcl−mode)) auto−mode−alist))
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