David P. Tew1, Christof Hättig2, Rafal A. Bachorz3, and Wim Klopper3
1 School of Chemistry, University of Bristol, Bristol BS8 1TS, UK, e-mail: david.tew@bristol.ac.uk

2 Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany, e-mail: christof.haettig@theochem.ruhr-uni-bochum.de

3Institut für Physikalische Chemie, Karlsruhe Institute of Technology, KIT Compus South, Kaiserstr. 12, D-76131 Karlsruhe, Germany email: rafal.bachorz@chem-bio.uni-karlsruhe.de; klopper@kit.edu

Chapter 20 in: P. Carsky et al. (eds.), Recent Progress in Coupled Cluster Methods, Springer Science+Business Media B.V. 2010.

The theoretical prediction of molecular energies and properties to chemical accuracy is often achieved using coupled-cluster methods and large orbital basis sets. Through recent advances in F12 explicitly correlated methods it is now possible to obtain the same high accuracy far more efficiently, using much smaller orbital basis sets. In CCSD(T)-F12 methods, the basis set truncation error is almost entirely eliminated by introducing a small set of two-particle basis functions that depend explicitly on the inter-electronic distances and closely resemble the correlation hole. The computational expense of including the F12 geminals can be reduced to a fraction of that of the underlying CCSD(T) calculation through judicious insertions of resolution of the identity approximations and further simplifications. In this chapter we present CCSD(T)-F12 theory and review the simplified models CCSD(T)(F12), CCSD(T)-F12x and CCSD(T)F12 , demonstrating their utility for practical applications. In contrast to standard CCSD(T), the Hartree-Fock basis set error may limit the accuracy of a CCSD(T)-F12 calculation and we therefore also describe methods for improving the Hartree-Fock energy within an F12 calculation. A brief discussion on the extension of F12 theory to reduce basis set errors in connected triples and response properties is also presented.

View Article:     PDF   (access restricted to domain theochem.rub.de)

Back to the list of Publications by the Quantum Chemistry (Hättig) Group